Zum Inhalt

3DP Biowalls

Additive manufacturing of fully-recyclable wall systems made from renewable materials

Programm / Ausschreibung THINK.WOOD, THINK.WOOD Innovation, THINK.WOOD Innovation - Holz als Werkstoff/Holzbaustoff Status laufend
Projektstart 01.10.2022 Projektende 30.09.2025
Zeitraum 2022 - 2025 Projektlaufzeit 36 Monate
Keywords biobased construction material, renewable construction material, circular economy in construction, additive manufacturing, automated construction, recycling, cradle-to-cradle

Projektbeschreibung

Inhalt des Projektes ist, forschungsbasiert einen robotergestützten, additiven Herstellungsprozess (3D Druck) für Wandbauteile mit biobasierten Rohstoffen zu entwickeln, wobei die Rohstoffe vorwiegend aus Nebenströmen der Papier-, Stärke- und Sägeindustrie stammen. Gedruckt wird eine Mischung aus Lignin, Stärke und Sägespäne, entweder in Pulverform oder mit Hilfe eines Granulats als Zwischenprodukt. Die zugrundeliegende Problemstellung betrifft vier Themenfelder: (1) Die weltweite Verknappung nicht erneuerbarer und erneuerbarer Rohstoffe (2) die derzeitige hauptsächliche Verwendung von anorganischen Baustoffen (Beton und Stahl) im Bauwesen sowie die (3) bis dato noch ineffiziente Nutzung sowie auch fehlende Kreislaufansätze bei der Verwendung nachwachsender Rohstoffe und (4) die niedrige Produktivität in der Bauindustrie.
Es gibt dabei zwei übergeordnete Ziele im Rahmen des beantragten F&E Projektes: (1) die Entwicklung eines biobasierten, vollständig kreislauffähigen Werkstoffs, der ausschließlich aus biobasierten Rohstoffen vorzugsweise aus Nebenströmen (z.B. der Papier-, und Sägeindustrie) besteht und (2) die Entwicklung eines für die Verwendung dieses Materials geeigneten robotergestützten, additiven Herstellungsprozesses für Wandbauteile. Durch die Kombination des neuartigen Werkstoffes und des additiven Herstellungsprozesses kann ein enormer Technologiesprung bei der Verwendung nachwachsender Rohstoffe gegenüber dem momentanen Stand der Technik und der Wissenschaft erreicht werden. Holzabfälle werden direkt ohne aufwendige Zwischenbearbeitungsschritte verarbeitet. Durch die Vermengung mit dem entwickelten biobasierter Klebestoff (Biomix) und ggf. weiteren Additiven, die unterschiedliche Modifikationen wie eine bessere Wasser- und Brandbeständigkeit ermöglichen, entsteht ein neuartiges Baumaterial. Durch die Verwertung der Sekundär-Rohstoffe als Grundmaterial erhöht sich der Ausnutzungsgrad des Rohholzes von derzeit max. 60% bei Schnittholz auf >90%.
Es wird erwartet, dass nach Abschluss des Projektes umfassende Kenntnisse über die Verarbeitung sowie auch zu den chemischen und mechanischen Eigenschaften von dem neuen Material vorliegen. Zudem werden umfassende Erkenntnisse über den additiven Fertigungsprozess von biobasierten Materialien sowie auch ein voll funktionsfähiges additives Fertigungswerkzeug für einen Industrieroboter für Wände bis 200mm Dicke vorhanden sein. Weiters werden umfassende Ökobilanzdaten vorliegen, die die Rohstoffversorgung und den Transport (nach EN 15804: A1-A2), den Herstellungsprozess (A3), den Rückbau (C1) sowie auch eine Prognose für die Nutzungsphase (B) beinhalten. Als Endergebnis wird ein vollmaßstäblicher Demonstrator mit 3 m Länge und 3 m Höhe vorhanden sein.
Mit diesem Projekt wird eine vollkommen neue Dimension in Bezug auf automatisiertes, kreislauffähiges, biologisches ressourceneffizientes Bauen erreicht werden.

Abstract

The content of the project is to develop a research-based, robotic, additive manufacturing (3D printing) process for wall components using bio-based raw materials, with the raw materials coming primarily from by-products of the paper, starch and sawmill industries. A mixture of lignin, starch and sawdust is printed, either in powder form or using a granulate as an intermediate product. The underlying problem concerns four issues: (1) the worldwide shortage of non-renewable and renewable raw materials (2) the current main use of inorganic building materials (concrete and steel) in the construction industry as well as the (3) to date still inefficient use as well as also missing circular approaches in the use of renewable raw materials and (4) the low productivity in the construction industry.
The two overarching objectives of the proposed R&D project are: (1) Development of a bio-based, fully recyclable material consisting exclusively of by-products of the paper, starch and sawmill industries and (2) Development of a robotic additive manufacturing process for wall components suitable for the use of the developed material. The combination of the novel material and the additive manufacturing process, which allows a radical simplification of the production of individual components, can result in an enormous technological leap in the use of renewable resources compared to the current state of the art and practice. Wood waste could be processed directly without complex intermediate processing steps. By mixing it with the developed “biomix” (biological glue) and, if necessary, other additives, enabling different modifications such as better water or fire resistance, a new type of building material is created. Based on previous research mixing all components in a dry sate is possible, therefore allowing for a dry extrusion before water is added as final step before compression under additional heat treatment. By using only by-products of the wood industry, the degree of utilisation can be increased from currently max. 60% (for sawn timber) to >90%.
With the completion of the research project, comprehensive knowledge on the production processes as well as the chemical and mechanical properties of the new material will be available. This expertise will be supplemented by the acquired knowledge on the additive manufacturing process using bio-based materials and a fully functional additive manufacturing tool for mounting on industrial robots (and also suitable for gantry systems). The fabrication of up to 200mm thick walls will be possible. Furthermore, extensive LCA data will be available, considering raw material supply and transport (according to EN 15804: A1-A2), the manufacturing process (A3), deconstruction and demolition (C1) as well as a forecast for the use stage (B). The results will be shown within a full-scale 3m long and 3m high demonstrator wall.
With this project, a completely new dimension in terms of automation, recyclability, and biological resource-efficient construction will be reached.