LEOPOLD
industriaL Energy OPtimizatiOn and fLexibility through Digitalization
Programm / Ausschreibung | Energieforschung (e!MISSION), Energieforschung (KP 2020), Energieforschung 6. Ausschreibung (KP) | Status | laufend |
---|---|---|---|
Projektstart | 01.03.2021 | Projektende | 31.07.2024 |
Zeitraum | 2021 - 2024 | Projektlaufzeit | 41 Monate |
Keywords | Energieeffizienz, Digitalisierung, Metaheuristik, Optimierung, Simulation |
Projektbeschreibung
Im Forschungsvorhaben LEOPOLD wird eine digitale Methode zur Flexibilisierung von Energiesystemen durch optimierte Planung und Steuerung industrieller Gesamtsysteme, auf Basis einer flexiblen und effizienten Modellierung und Optimierung, entwickelt.
Der gesellschaftlich erkannten Notwendigkeit, Industrie nachhaltiger und energieeffizienter zu betreiben, steht das Fehlen leistungsfähiger, anwendungsbereiter, digitaler Werkzeuge für die optimierte Gestaltung und Planung von komplexen Energie- und Produktionssystemen für die Industrie gegenüber. Obwohl die grundsätzliche Möglichkeit und das Nutzenpotential einer Synchronisation des industriellen Energiebedarfes mit dem (vermehrt, durch den steigenden Anteil erneuerbarer Energiequellen im Versorgungsmix) fluktuierenden Energieangebot erkannt wird, fehlen auch hierfür digitale Werkzeuge, aber auch Konzepte für die flexible Energieversorgung für industrielle Verbraucher. Damit bleibt ökologisches und ökonomisches Optimierungspotential in einem Hochtechnologieumfeld ungenutzt.
LEOPOLD adressiert diese Potentialfelder: Komplexe Energiesysteme in Industriebetrieben werden mit einer digitalen Methode optimiert gestaltet (Struktur) und gesteuert (Ablauf), sowie mit dem Ablauf des Industriellen Kernprozesses (Produktion) bestmöglich abgestimmt und dabei auch mit dem fluktuierenden Energieangebot der Energieversorgung synchronisiert. Die zu entwickelnde Methode bietet daher die Möglichkeit, die Industriesysteme bedarfsgerecht in variierendem energetischen Detail zu Modellieren und Optimieren: Für das Gesamtsystem wird eine vorwiegend diskrete Simulation genutzt, für energetisch relevante Bestandteile der Fabrik wird physikalisches Energieverbrauchs-Verhalten in einer hybriden diskret-kontinuierlichen Simulation abgebildet und für komplexe Energiesysteme und seine Elemente (z.B. Speicher/regelbare Einheiten) wird mathematisch sowie datenbasiert (Machine Learning/AI Methodeneinsatz auf Komponentenebene) modeliiert und gradientenbasiert lokal optimiert. Die lokale Energiesystemoptimierung wird mit der globalen Gesamtsystemoptimierung abgestimmt, die metaheuristikbasiert ist und die Simulation des Gesamtsystems als Bewertungsfunktion nutzt; eine hybride Optimierung entsteht. Der Ansatz wird in eine integrierte digitale Methode entwickelt, die eine Perspektive für die Praxisverwendung schafft. Gleichzeitig wird, unter Einbeziehung von Energieversorgern ein Konzept für die flexible Abstimmung von Energieversorgern und industriellen Energieverbrauchern für die optimierte synchronisierte Energiebeschaffung entwickelt und in die digitale Methode integriert.
LEOPOLD zielt auf eine Energieeffizienzsteigerung von bis zu 15% und CO2-Emissions-Reduktion von bis zu 20% im Gesamtprozess als auch auf Ebene der Komponenten komplexer Energiesysteme ab. Gleichzeitig wird durch die Synchronisation von Energiebedarf und -angebot ein Kostenvorteil für die Unternehmen erschlossen, sowie ein Effizienzvorteil – und damit ökologischer Nutzen – für das gesamte System aus Energieerzeugung und industriellen Energieverbrauchern erschlossen.
Das Projekt und seine Methodenentwicklung wird von einem umfangreichen industriellen Use-Case, mit zwei energieintensiven Unternehmen im Bereich Stahlprodukte in einer Wertschöpfungskette, begleitet, der vom Konzept über die Methodenentwicklung bis zur Implementierung die Praxisrelevanz des Ansatzes sicherstellt und das Nutzenpotential quantitativ in einem Demonstrator abschätzt. Durch die Integration eines Energieversorgers ist zudem die direkte Anwendungsperspektive des Konzeptes der flexiblen und synchronisierten Energiebeschaffung bzw. Abstimmung zwischen Energie-Versorger und -verbraucher gesichert. Das interdisziplinäre Konsortium stellt dabei das nötige Know-How sowie Vorarbeit bereit, um das ambitionierte Vorhaben erfolgreich durchzuführen.
Abstract
The LEOPOLD research project is developing a digital method for making energy systems more flexible through optimized planning and control of complete industrial systems, based on flexible and efficient modelling and optimization.
The socially and politically recognized need to operate industry in a more sustainable and energy-efficient manner is contrasted by the lack of powerful, application-ready digital tools for the optimized design and planning of complex energy and production systems for industry. And although the basic possibility and potential benefits of synchronizing industrial energy demand with the fluctuating energy supply (increasingly, due to the increasing share of renewable energy sources in the supply mix) are recognized, digital tools are also lacking for this purpose, as well as concepts for flexible energy supply for industrial consumers. Thus, ecological and economic optimization potential in a high-tech environment remains unused.
LEOPOLD addresses these potential fields: Complex energy systems in industrial plants are designed (structure) and controlled (process) in an optimized way using a digital method, and are optimally coordinated with the process of the industrial core process (production) and synchronized with the fluctuating energy supply. The method to be developed therefore offers the possibility of modelling and optimizing the industrial systems in variable energetic detail as required: For the overall system, a predominantly discrete simulation is used, for energetically relevant parts of the factory, physical energy consumption behavior is mapped in a hybrid discrete-continuous simulation, and for complex energy systems and their elements (e.g. storage/controllable units), mathematical and data-based modelling (machine learning/AI method application at component level) plus a gradient-based local optimization is carried out. The local energy system optimization is coordinated with the global overall system optimization, which is metaheuristics-based and uses the simulation of the overall system as evaluation function; a hybrid optimization is created. The approach will be developed into an integrated digital method that creates a perspective for feasible practical application. At the same time, a concept for the flexible coordination of energy suppliers and industrial energy consumers for optimized synchronized energy procurement will be developed and integrated into the digital method with the involvement of energy suppliers.
LEOPOLD aims to increase energy efficiency and reduce CO2 emissions by up to 20% in the overall production process and a further reduction of more than 10% at the level of complex energy supply systems. At the same time, the synchronization of energy demand and supply will create a cost advantage for the companies, as well as an efficiency advantage - and thus ecological benefit - for the entire system of energy production and industrial energy consumers.
The project and its method development is accompanied by a comprehensive industrial use case, with two energy-intensive companies in the field of steel products in one value chain, which ensures the practical relevance of the approach from concept to method development to implementation and estimates the potential benefits quantitatively in a demonstrator. The integration of an energy supplier also ensures the direct application perspective of the concept of flexible and synchronized energy procurement or coordination between energy supplier and consumer. The interdisciplinary consortium provides the necessary know-how and preliminary work to successfully implement the ambitious project.