Zum Inhalt

ÖKO-OPT-AKTIV

Optimiertes Regelung- und Betriebsverhalten thermisch aktivierter Gebäude zukünftiger Stadtquartiere

Programm / Ausschreibung ENERGIE DER ZUKUNFT, SdZ, SdZ 6. Ausschreibung 2018 Status abgeschlossen
Projektstart 01.01.2020 Projektende 30.09.2022
Zeitraum 2020 - 2022 Projektlaufzeit 33 Monate
Keywords Regelung;Stadtquartier;thermische Aktivierung;Simulation

Projektbeschreibung

Motivation
In den Bemühungen urbane Energiesysteme umweltfreundlicher und gleichzeitig kosteneffizienter zu gestalten konnte in den vergangenen Jahrzehnten durch verbesserte Gebäudehüllen und die Einbeziehung regenerativer Energieträger ein großes Einsparungspotential aufgezeigt werden. Im Gegensatz dazu wurde die Gestaltung des Zusammenspiels der Energiesysteme der einzelnen Gebäude, auf der Ebene ganzer Stadtquartiere, bisher erst in Anfängen untersucht.
Ziel
Das Projekt ÖKO-OPT-AKTIV zielt darauf ab, die Regelung der Energiesysteme ganzer Stadtquartiere zu verbessern. Durch ein optimiertes Zusammenspiel der gebäude-eigenen Subsysteme, die Einbeziehung volatiler regenerativer Energieträger und durch zentrale Speicherbewirtschaftung können sowohl ökonomische als auch ökologische Verbesserungspotentiale aktiviert werden.
Vorgangsweise
Anhand einer zum Projekt parallel laufenden Entwicklung des Energiesystems eines zukünftigen Stadtquartiers in Graz-Reininghaus wird eine adaptive, modellprädiktive Regelung für die Energieversorgung von zukünftigen Stadtquartieren entwickelt. Die im vorangegangenen Projekt ÖKO-OPT-QUART entwickelte modellprädiktive Regelung der Energiezentrale wird um die Kommunikation mit den in den Einzelgebäuden zu implementierenden Regelungen ergänzt und zu einem umfassenden, selbstlernenden regelungstechnischen Gesamtkonzept des gesamten Stadtteils erweitert. Die Einzelgebäude werden über thermisch aktivierte Bauteile beheizt und gekühlt und über einen zentralen Wärmespeicher durch Grundwasserwärmepumpen und ein Niedertemperatur-Nahwärmenetz sowie Kältenetz versorgt. Ergänzend unterstützt ein urbanes photovoltaisches Kraftwerk die Versorgung mit elektrischer Energie. Die Entwicklungen und Analysen werden anhand detaillierter thermo-elektrischer Simulationsmodelle durchgeführt, wobei die Modellierung der thermischen Bauteilaktivierung auf den Ergebnissen des Projektes solSPONGEhigh beruht.
Die adaptive, modellprädiktive Regelung wird unerwarteten klimatischen Bedingungen, gebäudetechnischen Ausfällen und Kostensprüngen unterworfen, um ihre Robustheit zu testen und ihre Praxistauglichkeit weiterzuentwickeln.
Ergebnisse
Das Ergebnis ist eine adaptive, modellprädiktive Regelung, die durch die optimale Bewirtschaftung der zentralen Energiespeicher und der thermisch aktivierten Gebäude einen resilienten und kosten- bzw. emissionsminimierten Betrieb des Gesamtenergiesystems eines Stadtquartiers gewährleistet.

Abstract

Motivation
In the efforts to make urban energy systems more environmentally friendly and at the same time more cost-efficient, a large savings potential has been demonstrated in recent decades through improved building envelopes and the inclusion of renewable energy sources. In contrast, the investigation of the interplay of the energy systems of the individual buildings, on the level of entire city districts, is only in the early stages.
Goal
The project ÖKO-OPT-AKTIV aims to improve the control strategies of the energy systems of entire urban districts. Through an optimised interaction of the buildings’ own subsystems, the inclusion of volatile regenerative energy sources and central storage management, both economic and ecological improvement potentials will be activated.
Procedure
Based on the current development of the energy system of a future urban quarter in Graz-Reininghaus, an adaptive, model predictive control strategy for the energy supply of future urban quarters will be developed. The model predictive control of the energy hub developed in the previous project ÖKO-OPT-QUART will be supplemented by communication with the control systems in the individual buildings and extended to a comprehensive, self-learning overall control concept for the entire district. The individual buildings are heated and cooled via thermally activated components and supplied via a low-temperature local heating and cooling network including a central hot water storage fed by ground water heat pumps. In addition, an urban photovoltaic power plant supports the supply of electrical energy. The developments and analyses are carried out on the basis of detailed thermo-electric simulation models, whereby the modelling of the thermally activated components is based on the results of the solSPONGEhigh project.
The adaptive, model predictive control is subjected to unexpected climatic conditions, technical building failures and variable tariffs in order to test its robustness and further develop its practical suitability.
Results
The result is an adaptive, model-predictive control system that ensures resilient and cost- or emission-minimized operation of the overall energy system of a city district through optimal management of the central energy storage facilities and the thermally activated buildings.