

ReplasX 4.0

Recycling 4.0: Vom Laborversuch zum digitalen Vorhersagemodell der Kunststoffpyrolyse

Programm / Ausschreibung	IWI 24/26, IWI 24/26, Basisprogramm Ausschreibung 2025	Status	laufend
Projektstart	01.09.2025	Projektende	31.08.2026
Zeitraum	2025 - 2026	Projektlaufzeit	12 Monate
Projektförderung	€ 96.903		
Keywords			

Projektbeschreibung

Das Projekt entwickelt Analysemethoden zur Charakterisierung von Kunststoffabfällen und ein Prognosemodell für die industrielle Pyrolyse, um die Prozessführung zu optimieren. Die Pyrolyse ist eine vielversprechende Alternative zur Verbrennung, da sie gemischte Kunststoffe in wiederverwendbares Öl umwandelt. Allerdings beeinflusst die komplexe Zusammensetzung der Abfälle die Stabilität der Prozesse und die Qualität der Produkte. Variierende Mengen an Koks, Ölen und Gasen erschweren Vorhersagen, und die Auswirkungen von Störstoffen sind unzureichend verstanden.

Um belastbare Daten zu gewinnen, werden definierte Kunststoffmischungen homogenisiert und in einer bestehenden Batch-Pyrolyseanlage getestet. Rohstoffe und Produkte werden mit verschiedenen Analysemethoden charakterisiert, um eine umfassende Datenbasis zu schaffen. Diese dient als Grundlage für ein Prognosemodell, das mithilfe neuronaler Netze oder statistischer Verfahren entwi-ckelt wird. Ziel ist es, die Grundlagen für eine zuverlässige Produktprognose zu schaffen und den Funktionsnachweis der Methoden zu erbringen.

Das Modell soll in einer weiteren Projektphase um eine dynamische Betrachtung erweitert und letztlich zur Digitalisierung der industriellen Syncycle-Pyrolyse inkludiert werden. Langfristiges Ziel ist 'die Erarbeitung von einem digitalen Co-Pilot, der die Betriebsmannschaft an der Industrieanlage auf Basis von Rohstoffwerten und Analgenparametern in ihrer Entscheidungsfindungen beim Betrieb unterstützt.

Projektkoordinator

• BDI - BioEnergy International GmbH

Projektpartner

• FH OÖ Forschungs & Entwicklungs GmbH