

MuStaFi

Multimodified Staple Fiber

Programm / Ausschreibung	IWI 24/26, IWI 24/26, Basisprogramm Ausschreibung 2024	Status	abgeschlossen
Projektstart	01.06.2024	Projektende	30.05.2025
Zeitraum	2024 - 2025	Projektlaufzeit	12 Monate
Keywords			

Projektbeschreibung

Polyolefin- und Polyamidfasern findet man in vielen Anwendungen, etwa im Automobil, für textile Anwendungen, in Bodenbelägen oder Geotextilien. Diese Anwendungen erfordern oft ein breites Eigenschaftsspektrum, das sich nicht nur auf mechanische Eigenschaften erstreckt, sondern auch die Stabilität der Fasern in der Anwendung verlangt. Hier ist es notwendig die Ergänzungen, Alternativen oder neue Entwicklungen im Bereich Antioxidantien, UV-Stabilisierung und Säurefänger ausfindig zu machen, um die Langlebigkeit von Faserendprodukten zu verbessern und diese am Ende ihres Produktlebens ordnungsgerecht entsorgen zu können, ohne dass unerwünschtes Mikroplastik in der Umwelt, zu Lande oder im Wasser, freigesetzt wird.

Im Projekt MuStaFi sollen synthetische Stapelfasern basierend auf Polypropylen und Polyamid in ihrer Stabilisierung neu gedacht und mit neuesten Entwicklungen am Additiv- bzw. Stabilisatoren-Markt ausgestattet werden. Zu Beginn wird daher eine ausführliche Recherche über Neuheiten bzw. Alternativen bei Stabilisatoren zu den aktuell verwendeten durchgeführt. Dabei wird in zwei Richtungen recherchiert: Einerseits sollen die eingesetzten Stabilisatoren das Polymer im Prozess vor der hohen thermischen Beanspruchung schützen, welche in der Faserherstellung bis zu 60 min bei Verarbeitungstemperatur betragen kann, sowie vor den Scherbedingungen in der Spinnplatte. Andererseits soll das Endprodukt mit ausreichend UV-Stabilisatoren ausgerüstet werden, ohne diesen überdimensioniert, sondern vielmehr zielgerichtet anzuwenden. Im Zuge des Projekts sollen nach einer geeigneten Auswahl an Stabilisatoren hochstabilisierte Compounds hergestellt werden, welche als Prüfkörper und Folien für eine erste Wirksamkeitsun-tersuchung per Langzeitofenlagerung, Schnellbewitterung oder auch Kompostierungen etc. auf ihre Eignung überprüft werden. Geeignete Stabilisator-Compounds werden danach auf der Laborspinnanlage zu Fasern verarbeitet, um die prinzipielle Verarbeitung der verschiedenen Stabilisatoren im Spinnprozess zu untersuchen. Die eigentliche Herausforderung besteht im Anschluss im Upscaling Prozess, bei welchem die Faserproduktion zuerst auf einer mittelgroßen Pilotanlage und schlussendlich auf den großen Produktionsanlagen durchgeführt werden soll. Als Ergebnis sollen nach Projektende nicht nur verwertbare Daten und Prozesse vorliegen, welche die kommerzielle Produktion von hochstabilisierten Stapelfasern ermöglicht, sondern vielmehr auch entsprechendes Know-how im Unternehmen aufgebaut worden sein, um wissensbasiert die Entwicklung von Stabilisatoren-Batches bzw. Stabilisatorsystemen zu betreiben.

Endberichtkurzfassung

Im Zuge des Projektes wurden zahlreiche Polymer/Additiv-Kombinationen getestet. Gestartet wurde dabei immer im Labormaßstab, wo die generelle Faserspinnbarkeit überprüft wurde. Bei vielversprechenden Versuchen wurden die entsprechenden Mischungen auf den jeweils nächst größeren Anlagen getestet, um die Upscaling-Fähigkeit zu überprüfen. Parallele dazu wurden beim Forschungspartner TCKT GmbH Materialcharakterisierungen durchgeführt, um den Einfluss und die Wirksamkeit der Additive auf die Farbe, die UV-Beständigkeit, den Anteil an flüchtigen Bestandteilen anhand der VDA278 (VOC und Fog) sowie OIT bestimmt.

Wie bereits im 2. Projektjahr begonnen, wurde auch in diesem Projektjahr mit der Untersuchung des Einflusses von Additiven auf die Farbechtheit fortgefahren. Über ausgewählte Additiv-Kombinationen, konnte beim Forschungspartner festgestellt werden, welche Additive, nicht nur in der Verarbeitung, sondern auch für das Endprodukt Faser geeignet sind und welche, auf Grund zu starker Verfärbung die Farbechtheit bei Produkten beeinflussen würden.

Projektkoordinator

• IFG Asota GmbH

Projektpartner

• Transfercenter für Kunststofftechnik GmbH