

## **FALT**

Folding of Advanced LED Technologies

| Programm / Ausschreibung | IWI 24/26, IWI 24/26, Basisprogramm Ausschreibung<br>2024 | Status          | laufend    |
|--------------------------|-----------------------------------------------------------|-----------------|------------|
| Projektstart             | 11.03.2024                                                | Projektende     | 10.09.2025 |
| Zeitraum                 | 2024 - 2025                                               | Projektlaufzeit | 19 Monate  |
| Keywords                 |                                                           |                 |            |

## **Projektbeschreibung**

Das vorliegende F&E-Projekt hat mittelgroße bis kleinere Display-Anwendungen von 30 - 75 Zoll Bildschirmdiagonale zum Inhalt - hier stößt man schnell auf Grenzen in Anwendungen, bei denen Displays platzsparend verstaubar sein müssen, da diese Displays aktuell nur als unterbrechungsfreie Einheit realisiert und verwendet werden können. Alle Versuche, LED-Bildschirme durch Faltung oder durch Aufrollen (OLEDs) zumindest um den Faktor 2 zu vergrößern bzw. zu verkleinern, sind bis dato gescheitert. So können mobile Anwendungen in Flugzeugen, (Luxus-)Limousinen, (Fern-)Zügen, (Fern-)Bussen und auch stationäre Anwendungen in kleineren Räumen derzeit nur durch sehr kleine Display-Lösungen bespielt werden - größere und bildtechnisch wesentlich bessere Systeme können aus der Notwendigkeit heraus, diese bei Nichtbenutzung bzw. aus Sicherheitsgründen auch entsprechend verstauen zu können, aktuell nicht eingesetzt werden. Der Markt bietet für dieses interessante und zukunftsträchtige Segment faltbarer mittelgroßer bis kleinerer LED-Displays derzeit schlichtweg keine zufriedenstellenden Lösungen.

Wir haben uns zum Ziel gesetzt, eine völlig neue Generation mittelgroßer bis kleinerer 2k/4k-LED-Displays zu entwickeln, deren Bildschirmfläche sich durch einen ausgeklügelten Faltmechanismus vom zusammengefalteten zum ausgefalteten Zustand um den Faktor 4 vergrößert, ohne dabei störende Stoßstellen oder Spalten zu generieren. Damit soll es erstmalig gelingen, den Spagat zwischen minimalem Stauvolumen und technisch brillantem Bild bei attraktiver Bildschirmdiagonale zu meistern.

Dazu bedarf es allen voran eines durchdachten Faltmechanismus, einer substantiellen Weiterentwicklung der "Adaptive Gap Calibration"-Technologie und einer für diese Anwendung geeignete Mikro-LED-Technologie samt geeigneter LED-Entwicklungspartnerschaft. Mit dieser Innovation haben wir uns zum Ziel gesetzt, völlig neue Maßstäbe im Marktsegment mittelgroßer bis kleinerer Displays mit LED-Bildpunktabständen im Submillimeterbereich (< 0,7 mm) für mobile und auch stationäre Anwendungen zu setzen und künftig die Technologieführerschaft zu übernehmen.

Zentrale Entwicklungsziele dabei sind:

Ziel 1: Entwicklung eines völlig neuartigen und ausgeklügelten Faltmechanismus, der die Verwendung von LED-Modulen mit einem Pixelabstand von unter 0,7 mm erlaubt und dabei einerseits mechanische Beschädigungen der LED-Paneelkanten vermeidet und andererseits mit hoher Genauigkeit und Reproduzierbarkeit ausreichende Robustheit und Stabilität für mobile Anwendungen bietet.

Ziel 2: Substantielle Weiterentwicklung der AGC-Technologie (Adaptive Gab Calibration) zu einer "Mikro-AGC"-Technologie, um verbleibende (dynamische) Spalten optisch verschwinden zu lassen.

Ziel 3: Entwicklung der LED-Module als Bausteine für die Display-Gesamtfläche, in Kooperation mit einem namhaften Hersteller.

Ziel 4: Absolute Minimierung der Gesamtdicke im zusammengefalteten Zustand und des Gesamtgewichts.

Ziel 5: Entwicklung eines durchdachten und kompakten Halterungssystems.

## **Projektpartner**

• C SEED Entertainment Systems GmbH