

## **SPQV**

Spin-Photon Qudits with Vanadium in Silicon Carbide

| Programm / Ausschreibung | Quantum Austria 3. Ausschreibung (2023/2024)                          | Status          | laufend    |
|--------------------------|-----------------------------------------------------------------------|-----------------|------------|
| Projektstart             | 25.04.2024                                                            | Projektende     | 24.01.2026 |
| Zeitraum                 | 2024 - 2026                                                           | Projektlaufzeit | 22 Monate  |
| Keywords                 | Quantum computing; Spin; photon; qudit; silicon carbide; microcavitiy |                 |            |

## **Projektbeschreibung**

Vanadium in Siliziumcarbid wird als Qudit entwickelt und in einen photonischen Mikroresonator aus Silizium integriert werden, um Spin-Photon Verschränkung zu erzielen. Dies wird die Grundlage für einen Halbleiter-basierten Quantenrechner mit hervorragender Modularität und Skalierbarkeit bilden.

## **Abstract**

We will develop vanadium in silicon carbide to leverage its multi-level qudit spin structure for fault-tolerant qubit encoding. By enhancing its interaction with light using a silicon microcavity, we will demonstrate spin-photon entanglement. These achievements will lay the groundwork for a highly modular and scalable quantum computing architecture based on semiconductors.

## **Projektpartner**

• Österreichische Akademie der Wissenschaften