

FLIP-FLOP

Flexible Line and On-demand Public transport

Programm / Ausschreibung	Digitale Technologien, Digitale Technologien, Al for Green 2023	Status	laufend
Projektstart	01.06.2024	Projektende	30.11.2026
Zeitraum	2024 - 2026	Projektlaufzeit	30 Monate
Keywords	public transport, hybrid, on-demand service, bus lines, Al-based forecast, Al-based optimisation		

Projektbeschreibung

Im Projekt FLIP-FLOP wird ein Al-basiertes Tool entwickelt, das die Einführung eines nachhaltigeren und effizienteren urbanen Mobilitätsdienst unterstützt. Das Mobilitätsservice kombiniert die Effizienz von traditionellen Buslinien mit der Bequemlichkeit und Flexibilität von Anrufsammeltaxis. Die wird dadurch erreicht, dass die Nutzung der Fahrzeuge und die abgefahrenen Wege den Bedürfnissen der Passagieren in Echtzeit angepasst werden. Dadurch wird zu Spitzenzeiten ein hoch performantes System garantiert, während zu Nebenverkehrszeiten ein flexibles Service angeboten werden kann. Der nahtlose Übergang zwischen diesen beiden Services wird mittels Al-basierten Methoden sichergestellt: 1) Generative neuronale Netze verbessern die Vorhersage der Verkehrsnachfrage durch die Anreicherung synthetischer Populationen und die Integration zusätzlicher Datenquellen wie OD-Matrizen aus bestehenden Verkehrsmodellen oder Verkehrsinformationen aus Mobilfunkdaten, 2) raum-zeitliche maschinelle Lernmodelle verknüpfen verschiedene historische und Echtzeitdaten für die Vorhersage von Fahrzeiten, und 3) heuristische und exakte Optimierungstechniken werden mit Reinforcement Learning für die strategische und betriebliche Planung kombiniert. Diese Algorithmen bestimmen Fahrzeugtypen, Stationspläne und den On-Demand-Betrieb auf der Grundlage von Echtzeit-Nachfrageprognosen. Um das Service zu verbessern, können die Fahrgäste Fahrten im Voraus oder unmittelbar vor ihrer Fahrt anfordern. Das öffentliche Verkehrssystem passt sich an jede neue Nachfrage an, um ein insgesamt optimales Service zu bieten.

Darüber hinaus werden im Rahmen des Projekts Methoden zur Einbeziehung alternativer Antriebssysteme und fortschrittlicher Technologien (wie Elektrobusse und automatisierte Fahrzeuge) untersucht und ihre Vorteile bewertet. Da das Projekt darauf abzielt, die Zugänglichkeit des Dienstes insbesondere in unterversorgten Gebieten und zu unterversorgten Zeiten zu verbessern, erwartet man eine langfristig positive Wirkung im ökologischen, ökonomischen wie auch sozialen Bereich.

Abstract

The FLIP-FLOP project develops Al-driven tools to enable an innovative mobility service for the transition towards more sustainable and efficient urban mobility solutions. The novel mobility service seamlessly combines the efficiency of traditional bus lines with the convenience and flexibility of on-demand transportation, allowing vehicles to adapt to real-time passenger demand dynamically. During peak hours, it ensures high-performance service, while allowing increased flexibility

and demand-driven mobility in off-peak times. The seamless transition between these service modes is powered by novel Al algorithms: 1) Generative Neural Networks will improve travel demand predictions by enriching synthetic populations, integrating additional data sources, like OD-Matrices from existing traffic models or traffic information from mobile phone data, 2) spatiotemporal machine learning models will interconnect various historical and real-time data for travel time predictions, and 3) heuristic and exact optimization techniques are combined with Reinforcement Learning for strategic and operational planning. These algorithms determine vehicle types, station schedules, and on-demand operation based on real-time demand predictions. This also includes proactive passenger communication by providing real-time updates on arrival times and journey durations. To improve the service, passengers can request journeys in advance or right before their trips. The public transport system will adapt with each new demand to offer a globally optimal service.

Furthermore, the project explores methods for incorporating alternative propulsion systems and advanced technologies (such as electric buses and automated vehicles) while assessing their advantages.

By aiming to increase service accessibility, especially in underserved areas and times, the project also anticipates a positive long-term social impact.

Projektkoordinator

• AIT Austrian Institute of Technology GmbH

Projektpartner

- Tech Meets Legal GmbH
- Landeshauptstadt Klagenfurt am Wörthersee
- KMG Klagenfurt Mobil GmbH
- pdcp GmbH
- DatenVorsprung GmbH