

Induktionsofen

Neue Technologoie zur Herstellung mineralischer Werkstoffe über die Schmelzroute als alternaitve zum Lichtbogenofen.

Programm / Ausschreibung	IWI, IWI, Basisprogramm Ausschreibung 2023	Status	abgeschlossen
Projektstart	15.09.2023	Projektende	30.06.2025
Zeitraum	2023 - 2025	Projektlaufzeit	22 Monate
Keywords			

Projektbeschreibung

Bei der klassischen Methode der Schmelze von Al2O3 und ZrO2 basierten Materialien über Lichtbogenöfen erfolgt die Einbringung der Energie über Graphitelektroden. Zwischen der Elektrode und dem zu schmelzenden Material entsteht ein Lichtbogen über den das Material geschmolzen wird. Nachteile dieser Methode ist zum einen eine CO2 Emission durch die abbrennende Elektrode, zum anderen eine teilweise Reduktion des Materials durch den Kohlenstoff. Dadurch können gewisse Materialien, die sensibel auf reduzierende Bedingungen reagieren nicht, nur mit Qualitätsabstrichen oder durch thermische Nachbehandlung über diese Route hergestellt werden. Im Gegensatz dazu kommt ein Induktionsofen ohne Elektroden aus. Durch die direkte Einkopplung eines hochfrequenten elektrischen Feldes in das zu schmelzende Material können keramische Werkstoffe direkt geschmolzen werden. Das erlaubt zum einen die Herstellung hochreiner Materialien, zum anderen eine nahezu CO2 neutrale Herstellung. Des weiteren kann bei Verwendung eine geschlossenen Schmelzkammer in verschiedenen Atmosphären gearbeitet werden, beispielsweise unter Stickstoffatmosphäre um Nitride oder Oxynitride herzustellen. Zuletzt erlaubt diese Technologie in der nächsten Ausbaustufe einen kontinuierlichen Schmelzprozess der damit wesentlich effizienter als derzeitige Batchöfen betrieben werden kann.

Endberichtkurzfassung

Verschiedene hochreine ZrO2-basierter Materialien (dotiert mit Y, Ca, Sc, Gd) konnten mittels kalter-Tiegel-Technologie erfolgreich synthetisiert werden. Die Materialien entsprechen den Erwartungen verschiedener Kunden aus dem Bereich der technischen Keramik.

Kühlplatten und maßgefertigte Kühlwalzen wurden erfolgreich getestet. Die direkte Formgebung der Schmelze zu Körnern mit definierten Kanten und Korngrößen zeigt vielversprechende Ergebnisse für Schleifanwendungen. Erste Machbarkeitsstudien mit profilierten Kühlwalzen waren erfolgreich, obwohl die Ausbeute an gut geformten Körnern noch gering ist.

Projektpartner

• Imerys Villach GmbH