Dry Reverse Micelles
Dry reverse micelles - Key to more efficient drug delivery systems
| Programm / Ausschreibung | Life Sciences, Life Sciences, Life Science Ausschreibung 2023 | Status | laufend |
|---|---|---|---|
| Projektstart | 01.02.2024 | Projektende | 31.07.2025 |
| Zeitraum | 2024 - 2025 | Projektlaufzeit | 18 Monate |
| Keywords | drug delivery; micelles; macromolecular drugs; | ||
Projektbeschreibung
Ziel dieses Projektes ist die Entwicklung einer Plattform-Technologie zur effizienteren Verabreichung von hochmolekularen hydrophilen Wirkstoffen (Biologicals). Diese neue Technologie erhöht die Lagerungsstabilität von Wirkstoffen (i), bietet diesen Schutz gegen einen vorzeitigen enzymatischen Abbau (ii), erhöht ihre Resorption an Schleimhäuten (iii) und verbessert die zelluläre Wirkstoffaufnahme (iv). Sie basiert auf wasserfreien reversen Mizellen, in die hydrophile, makromolekulare Wirkstoffe eingelagert werden können. Die beladenen reversen Mizellen werden in lipophile Nanoträgersysteme wie selbst-emulgierende ölige Konzentrate (SEDDS) oder lipid-basierte Nanopartikel eingebettet. Orientierende Studien zeigten, dass die Entwicklung solcher Darreichungsformen prinzipiell möglich ist. Zudem zeigte eine umfassende Patentrecherche, dass keine Patente der Entwicklung solcher Darreichungsformen im Wege stehen und dass eine ausreichende Neuheit gegeben ist.
Endberichtkurzfassung
Among active pharmaceutical ingredients (APIs), biological therapeutics—such as vaccines, growth factors, immune modulators, antibodies, blood- and plasma-derived products, peptide drugs, and DNA/RNA-based medicines—represent the fastest-growing market segments. However, most biologics face significant formulation challenges: they are often unstable during storage, degrade rapidly in vivo due to peptidases or nucleases, and exhibit poor membrane permeability due to their large molecular size and hydrophilicity.
To address these issues, pharmaceutical companies commonly rely on strategies like ultra-low temperature storage (e.g., –80?°C) or costly lyophilization. Since the success of COVID-19 vaccines, lipid-based nanocarriers have attracted considerable interest for delivering biologicals. However, these systems often suffer from poor loading efficiencies for hydrophilic macromolecular drugs, which have low solubility in the oily phase of lipid carriers.
One common strategy to improve drug loading is the formation of hydrophobic ion pairs (HIPs), but this approach depends heavily on the drug’s charge density. Another method involves reverse micelles, where hydrophilic drugs are encapsulated within an aqueous core surrounded by a lipophilic shell. Nevertheless, even within reverse micelles, hydrophilic macromolecules remain susceptible to destabilization.
To overcome these limitations, this project developed water-free lipid-based nanocarriers capable of encapsulating hydrophilic macromolecular drugs within dry reverse micelles. These innovative formulations demonstrated a high drug loading, a favorable safety profile and significantly enhanced membrane permeation of the encapsulated biologics.