

InnCO2Search

Suche und Datenbankintegration CO2 und Methan fixierender Enzyme mittels CatalophoreTM und Deep Learning Technologien

Programm / Ausschreibung	IWI, IWI, Basisprogramm Ausschreibung 2023	Status	abgeschlossen
Projektstart	01.07.2023	Projektende	30.06.2024
Zeitraum	2023 - 2024	Projektlaufzeit	12 Monate
Keywords			

Projektbeschreibung

Die signifikante Reduzierung von klimaschädlichen Gasen, allen voran Kohlendioxid (CO2) und Methan (CH4), kann als eines der wichtigsten globalen Ziele für diese und weitere Generationen angesehen werden. Vom jetzigen Standpunkt aus wäre es illusorisch zu glauben, dass nur eine Technologie in kurzer Zeit zu einer Konzentrationsumkehr führen wird. Es werden mehrere Technologien und Regelungen synergistisch wirken müssen, um diesem Problem Herr zu werden. Bereits heute wird versucht, durch Anreize, Förderungen, etc. risikoreiche, konservative, aber auch progressiv innovative Forschung und Anwendungen zu ermöglichen. Entgegen vieler Meinungen, dass diese Herausforderungen nur Geld kosten, bieten diese Initiativen auch die Chance mit smarten Technologien neue Märkte und neue Arbeitsplätze zu erschließen.

Viele Hoffnungen ruhen im Moment auf unterschiedlichen physikalischen, chemischen, biologischen und ökologischen Ansätzen. Die biologische Umwandlung von CO2 ist ein praktikabler und nachhaltiger Ansatz für den Übergang von der bestehenden linearen Kohlenstoffwirtschaft zu einer Kreislaufwirtschaft im Rahmen einer erwünschten Bioraffinerie.

Mikroorganismen als auch Enzyme als Biokatalysatoren sollen die Reduzierung von CO2 und Methan im skalierbaren Gigatonnen Maßstab ermöglichen. Ein durchaus realistisches, aber auch risikoreiches Szenario. Müssen doch zur Erreichung dieses Ziels noch viele einzelne biotechnologische Zahnräder zu einem komplexen global wirkenden grünen Getriebe zusammengesetzt werden.

Zu diesem ambitionierten Ziel kann Innophore mit Hilfe einer Weiterentwicklung einer computergestützten Enzymsuch- und Entwicklungsplattform, basierend auf der bereits patentierten und angewandten CatalophoreTM Technologie, einen Teil beisteuern. Aufbauend auf der innovativen strukturbasierten Suche von neuen Enzymen soll eine erweiterte Plattform etabliert werden, in der neue und noch unbekannte CO2- und Methan-bindende und -umsetzende Mikroorganismen bzw. bei denen die beiden Gase als Cosubstrate eine entscheidende Rolle spielen, identifiziert werden. Der Mehrwert der hier zur Anwendung kommenden CatalophoreTM Suchtechnologie unter Miteinbeziehung der 3D physikochemischen Punktwolken besteht in einer innovativen und zugleich tiefergehenden Suche nach neuen Enzymen, die im Vergleich zu traditionellen Methoden und Technologien nur mit erheblichen finanziellen Ressourcen und großem Zeitaufwand durchgeführt werden kann.

Parallel dazu wird nach homologen und verbesserten Enzymen gesucht, welche sowohl in enzymatischen Elektrosynthesen als auch bereits bekannten Stoffwechselwegen eine Schlüsselrolle spielen, aber durch ihre geringe Aktivität bzw.

Umsetzungsrate den Prozess des CO2- oder Methanabbaus stark verlangsamen (z.B. RuBisCo im Calvin Zyklus; Assimilation von Kohlenstoff aus Kohlenstoffdioxid). Es werden daher unterschiedliche Ansätze bei der Suche verfolgt:

- i) Suche nach Proteinen, welche CO2 und Methan direkt binden oder als Substrat verstoffwechseln.
- ii) Suche nach Proteinen, welche CO2 und Methan als Cosubstrat nutzen.
- iii) Suche nach Proteinen, welche CO2 und Methan in unterschiedlicher Form beinhalten (Hydrogencarbonat, Formiat,...)
 In weiterer Folge nutzen wir die gesammelten und aufbereiteten Daten aus der Enzymsuche inklusive der vollständigen
 Sammlung/Übersicht der Modellstrukturen aller identifizierten Enzyme, um mit Hilfe von Machine Learning Modelle zu
 trainieren, welche dann im Stande sind, aus den Daten Klassifizierungen und Vorhersagen über beispielsweise Aktivität,
 Spezifität oder Stabilität zu treffen. Diese Vorhersagen sind dabei wesentlich schneller möglich als mit konventioneller
 Technologie. Benötigte Machine-Learning-Tools und Technologien werden in die CatalophoreTM Plattform eingepflegt, um für
 spezifische Anwendungen bzw. Kundenaufträge angewandt zu werden.

Basierend auf der von Innophore bereits etablierten CatalophoreTM Technologie und Erfahrung, welche im Vorfeld bei der Vorhersage kritischer SARS-CoV-2 Mutationen für internationales Aufsehen gesorgt hat, ergeben sich signifikante Vorteile in der positiven Umsetzung der Projektziele.

Zusammenfassend lässt sich sagen, dass dieses Projekt den Aufbau einer innovativen Plattformdatenbank für potenzielle neuartige CO2- und Methan-umwandelnde/-bindende Enzyme ermöglicht, die bisher in keiner Datenbank vorhanden sind, und damit vielen Projektideen und Anwendungen den nötigen Anstoß zur Umsetzung gibt. Neben der Bereitstellung dieser struktur-basierten Enzymdatenbank für globale Forschungs- und Anwendungsstrategien, welche zum Beispiel im Anschluss lizenzbasiert erworben werden kann, dient dieses Projekt Innophore als Vorstufe, um im Weiteren mit ausgewählten Partnern aus Forschung und Wirtschaft ein weitaus größeres Vorhaben (InnCO2Industries) für die skalierbare Entwicklung und Anwendung von Prozessen zur Reduzierung und Nutzung von klimaschädlichen Gasen umzusetzen.

Endberichtkurzfassung

Im Rahmen des Projektes InnCO 2 Search wurde eine umfassende Datenbank generiert. Basierend welche alle relevanten CO 2 und Methan bindenden Enzyme beinhaltet. Mit Hilfe von Sequenzdaten von 55 bekannten CO2 und Methan bindenden Enzyme wurden Homolgiemodelle erstellt, welche wiederum als Vorlage zur Berechnung von Punktwollen dienten. Punktwolken, auch Catalophore TM genannt, bilden das Aktive Zentrum eines Enzyms mit Hilfe von Punkten ab, welche aus bis zu 18 physiko-chemischen Eigenschaften bestehen können. Diese Punktwolken, welche auch Machine readable sind ermöglichen erst eine Sequenz und Struktur unabhängige Suche nach neuen Enzymen. Diese Catalophore Technologie wurde auch in diesem Projekt bei der Suche nach neuen CO 2 und Methan bindenden Enzymen eingesetzt und es konnte so, basierend auf 55 Ausgangsenzyme, ca. 70. 000 neue CO 2 und Methan gefunden werden. Die Ergebnisse wurden in das moderne interaktive Innophore Copilot Userinterface transferiert, mit dessen Hilfe die Enzymcluster visualisiert werden können. Homologiemodelle und zusätzliche Enzyminformationen sind abrufbar. Der CoPilot CO 2 und der CoPilot Methan , werden nach Projektende noch weiterentwickelt und dient akademischen und industriellen Kunden als wichtige Datengrundlage für eine fortführende Forschung bzw. Anwendung.

Projektpartner

• Innophore GmbH