FFG

Forschung wirkt,

UMUGUC

Usability-focused Multi-GPU Compression

Programm / Ausschreibung Kooperationsstrukturen, Kooperationsstrukturen, Status laufend
Bridge Ausschreibung 2023

Projektstart 01.09.2023 Projektende 31.08.2026
Zeitraum 2023 - 2026 Projektlaufzeit 36 Monate
Keywords GPU; compression; API; distributed memory

Projektbeschreibung

Die meisten der effektivsten Architekturen fur die Verarbeitung groRer Datenmengen basieren heute auf Clustern mit
verteiltem Speicher, die mit GPUs oder anderen Beschleuniger-Hardwarekomponenten ausgestattet sind. Bei der Arbeit mit
groBen Datenmengen oder E/A- und bandbreitengebundenen Algorithmen auf dieser Art von Hardware kann eine
Komprimierung sehr vorteilhaft sein. Hocheffiziente Implementierungen dieses Prinzips erfordern, dass Daten komprimiert
im Speicher gehalten werden und erst so nah wie mdglich an der eigentlichen Berechnung dekomprimiert werden,
idealerweise innerhalb desselben GPU-Kerns. Dies ermdglicht nicht nur eine verbesserte Leistung, sondern kann auch die

Energieeffizienz erhdhen, da weniger Kommunikation aulRerhalb des Chips erforderlich ist.

Die Implementierung einer gro8 angelegten industriellen oder wissenschaftlichen Anwendung fiir GPU-Cluster mit dieser Art
von End-to-End-Komprimierung erfordert ein Team, das mit der Parallelisierung von verteiltem Speicher, GPU-spezifischer
Optimierung und Kompressionsalgorithmen mit hohem Durchsatz vertraut ist, zusatzlich zu dem flir den eigentlichen
Anwendungsfall erforderlichen Fachwissen. Dies macht die Vorteile der End-to-End-Kompression flr alle aulRer den groRten
Unternehmen und den am besten finanzierten und am weitesten verbreiteten Open-Source-Forschungssoftware-Stacks

unerreichbar.

In UMUGUC werden wir dieses Problem angehen, indem wir eine benutzerfreundliche, deklarative API fiir die komprimierte
Datenverarbeitung auf GPU-Clustern entwickeln, die auf dem bestehenden Celerity High-Level-C++-Laufzeitsystem basiert.
Anstatt die Komprimierung und Dekomprimierung fiir die verschiedenen Ubertragungs- und Speicheranforderungen einer
Anwendung manuell zu implementieren, missen Entwickler lediglich die funktionale Prazision und die Zugriffsanforderungen
fur jeden Datenpuffer angeben, der an einer bestimmten Berechnung beteiligt ist. Anhand dieser Informationen kann ein
kombiniertes Meta-Programmier- und Laufzeitsystem zur Kompilierungszeit eine geeignete Komprimierungsstrategie
auswahlen, die bei Bedarf automatisch implementiert wird, indem alle Kernels, die mit komprimierten Daten interagieren,

geandert werden - fur den Anwendungsentwickler transparent.

Der wichtigste industrielle Anwendungsfall des Projekts umfasst mehrere Berechnungsschritte, die bei der Verarbeitung von

FFG Projektdatenbank - Stand 04.02.2026 1



Punktwolkendaten aus der flugzeuggestitzten Laserkartierung erforderlich sind. Dabei handelt es sich um sehr E/A-intensive
Vorgange, die von einer durchgangigen Komprimierung stark profitieren kénnen, und die Struktur der betroffenen
raumlichen Daten bietet Méglichkeiten fir spezielle Kompressionsverfahren. Alle Implementierungsarbeiten werden auf der

Industriestandard-Programmierschnittstelle SYCL basieren und auf mindestens 3 Hardware-Plattformen validiert.
Abstract

Today, the majority of the most effective architectures for large-scale data processing are based on distributed memory
clusters featuring GPUs or other accelerator hardware components. When working with large data volumes or I/O and
bandwidth-bound algorithms on this type of hardware, compression can be very beneficial. Highly efficient implementations
of this principle require keeping compressed data in memory, and only decompressing it as close to the actual computation
as possible, ideally within the same GPU kernel. Not only does this enable improved performance, it can also increase

energy efficiency by reducing the need for off-chip communication.

Implementing a large-scale industrial or scientific application for GPU clusters with this type of end-to-end compression
requires a team familiar with distributed memory parallelization, GPU-specific optimization, and high-throughput
compression algorithms, in addition to the domain knowledge necessary for the actual use case. This puts the advantages of
end-to-end compression outside the reach of all but the largest companies and most well-funded and broadly applicable

open-source research software stacks.

In UMUGUC, we will address this issue by creating a user-friendly, declarative API for compressed data processing on GPU
clusters, based on the existing Celerity high-level C++ runtime system. Rather than manually implementing compression
and decompression for the various transfer and storage requirements of an application, developers will only be required to
specify the functional precision and access requirements on each data buffer involved in a given computation. This
information will allow a combined compile-time meta-programming and runtime system to select a suitable compression
strategy, which will be automatically implemented as required by modifying all compute kernels interacting with compressed

data -- transparently to the application developer.

The main industrial use case of the project involves several computational steps necessary in the processing of point cloud
data from airborne laser mapping. These are a highly I/O-intensive operations, which can benefit greatly from end-to-end
compression, and the nature of the spatial data involved provides opportunities for specialized compression schemes. All
implementation work will be based on the industry-standard SYCL programming interface, and validated on at least 3

hardware platforms.
Projektkoordinator

e Universitat Innsbruck

Projektpartner

e Airborne Hydro Mapping GmbH

2 FFG Projektdatenbank - Stand 04.02.2026



