FFG

Forschung wirkt,

Symflower-Local

Generierte Tests im Entwicklungsworkflow

Programm / Ausschreibung [IWI, IWI, Basisprogramm Ausschreibung 2023 Status abgeschlossen
Projektstart 15.02.2023 Projektende 31.05.2024
Zeitraum 2023 - 2024 Projektlaufzeit 16 Monate
Keywords

Projektbeschreibung

Symflower beschaftigt sich seit seiner Grindung 2018 mit der Entwicklung einer Symbolic-Execution, um automatisiert Unit-
Tests fur Softwareentwickler zu erstellen und diese im Entwicklungsprozess produktiver zu machen. Die R&D Phase, um
diese Symbolic Execution zu entwickeln, hat langer gedauert als urspringlich veranschlagt. Einerseits konnte das Tech Team
daflr erst Anfang 2020 komplettiert werden und andererseits sind wir auf einige technische Hirden gestoRen, welche die

Entwicklung verzégert haben.

Mit Stand Janner 2023 sind wir kurz davor, erste Umsatze aus der Serientiberfiihrung der Resultate aus dem letzten
Basisprogramm (siehe eCall-Nr. 35401754) zu generieren. Sehen aber starken Bedarf darin, weiter experimentelle
Entwicklung zu betreiben, um das volle Potential unserer Symbolic Execution ausschdpfen zu kdnnen und den Markt breiter

Zu adressieren.

Wir konnten 2019 den Top-Tech-Investor eQventure flir Symflower gewinnen. Durch deren Investment erhalten wir aktive
Unterstiitzung sowie Coaching von den beiden Tricentis (erstes Software-Tech-Unicorn Osterreichs) Griindern Franz
Fuchsberger und Wolfgang Platz. Im November 2022 wurde eine weitere Finanzierungsrunde von eQventure und dem

Oberdsterreichischen Hightechfonds Uber ein Wandeldarlehen vorgenommen.

Im Q3 2022 konnten wir unsere Marketing-Abteilung neu ausrichten und sind hier nun bestens flr unseren Go-To-Market

ausgestattet.

Mit Februar 2023 komplettiert Mathias Holzinger als CEO das Management-Team von Symflower.

Um Softwareentwicklern groRtmadglichen Wert zu stiften, muss sich Symflower-Local in den natirlichen Entwicklungs-
Workflow eines Softwareentwicklers eingliedern. Das bedeutet, dass Tests zum richtigen Zeitpunkt generiert werden und
generierte Tests bereits bestehende Tests berlicksichtigen missen. Ist das nicht der Fall, kann die erzeugte Menge an Tests
den Softwareentwickler Gberfordern. Um diese zentrale Problemstellung zu lI6sen, missen Antworten auf folgende

Forschungsfragen erarbeitet werden:

FFG Projektdatenbank - Stand 22.01.2026 1



- Wie mussen sich generierte Tests in gangige Entwicklungs-Workflows integrieren, um die Arbeit der Entwickler effektiv zu
unterstiitzen und zu beschleunigen?

- Wie geht man mit bestehenden, manuell erstellten Tests um und wie spielen diese mit generierten Tests zusammen?

- Wie kénnen bestehende Test-Konventionen eines Projektes erkannt und genutzt werden, damit sich die generierten Tests
nahtlos in bestehende Test-Suiten einfligen?

- Wie kénnen die Resultate der Symflower-Testgenerierung den Entwickler beim Schreiben von Code und beim Debugging
anleiten?

- Wie kénnen Softwareentwickler mit tausenden von generierten Tests effizient umgehen?

Des Weiteren haben die bisherigen bezahlten POCs ergeben, dass generierte Tests idealerweise schon direkt, d.h. wahrend

der Entwickler Code schreibt, erzeugt werden sollten.
Endberichtkurzfassung

Symflower generates unit and integration tests for Java projects through the application of symbolic execution. Within this

project we reached the following results:

Integration into existing developer workflows

With supporting all major editors, operating systems and architectures, we were set for a major goal of this project: the
integration into existing developer workflows. Since there is no single workflow for developers, we distilled all workflows

down the most important directions where generated tests can help:

Write tests before implementing (especially important for TDD)
Write tests after implementing

Highlight problems through tests while implementing

We succeed in supporting all these directions by implementing the following approaches:

Generate test suites and test templates through shortcuts, actions, context menus and scripts
Generate single tests through a “create test” code lens (directly inside of the source code)
Duplicate single tests through a “duplicate test™ code lens

Filter and select generate tests through a “add test™ code lens

Improve maintainability by adding tests directly into existing test suites

Highlight problems with wiggle lines directly inside of the source code

Detect existing coding conventions and configurations and apply them for analyzes and generations

Support the versatile Java ecosystem

2 FFG Projektdatenbank - Stand 22.01.2026



Another major goal of this project is to support the versatile Java ecosystem. In the first year we most notably accomplished
to lay a foundation for all future additions by implementing a flexible configuration store with layering, grouping, hierarchies
and attributes that can deal with every source and combination of configuration. To evaluate this configuration store
multiple basic components were added for dealing with builds and dependencies of the most common Java tooling “Maven®
and “Gradle" as well as the test frameworks™JUnit 4° and *JUnit 5°. All of them apply to a majority of projects of the Java
ecosystem. Additionally, we were able to introduce basic support for all necessary environmental details to allow the
evaluation of workflows of software developers that use the Java application framework “Spring”. Specifically we were able
to do a vertical slice of Spring controller integration tests which have one of the highest complexity in the whole Java

ecosystem.

Projektkoordinator

o E&M Software Service GmbH

Projektpartner

e Software Competence Center Hagenberg GmbH

FFG Projektdatenbank - Stand 22.01.2026 3



