

SMACS

Smart Maintenance of Rail HVAC Systems

Programm / Ausschreibung	Mobilität der Zukunft, Mobilität der Zukunft, MdZ - 18. Ausschreibung (2021) PM, System Bahn	Status	laufend
Projektstart	01.08.2022	Projektende	31.07.2026
Zeitraum	2022 - 2026	Projektlaufzeit	48 Monate
Keywords	Condition-based & Predictive Maintenance; Digital Twinning; Digitale Wartungstools; HVAC		

Projektbeschreibung

Umweltfreundliche Personenmobilität im System Bahn ist ein Schlüssel zur Erreichung von Nachhaltigkeitszielen u.a. des Pariser Klimaabkommens. Um die Attraktivität des öffentlichen Personen(nah)verkehrs für Fahrgäste weiter auszubauen sind Verfügbarkeit, Zuverlässigkeit, Kosten und Komfort zentrale Aspekte, nicht zuletzt vom Heizungs-, Lüftungs-, Klimasystem (HVAC-System). Für einen störungsfreien, energieeffizienten, hygienischen und sicheren Betrieb des HVAC-Systems ist Instandhaltung erforderlich. Heute werden dabei Komponenten präventiv, unabhängig vom tatsächlichen Verschleiß und meist deutlich vor dem tatsächlichen Lebensdauerende getauscht. Dies resultiert in erheblichen Kosten (Material, Arbeitszeit) und Umweltauswirkungen (Abfall, Ressourcenbedarf für Neukomponenten, Energiebedarf).

Als Lösung hat das F&E-Projekt SMACS das Ziel, Innovationen zu intelligenter Instandhaltung von HVAC-Systemen in Schienenfahrzeugen voranzutreiben. Fokusfelder dabei sind bedarfsorientierte, zustandsabhängige Instandhaltungsstrategien sowie effiziente digital vernetzte Instandhaltungsprozesse und Tools.

Als neue Instandhaltungsstrategien werden in SMACS Condition-based Maintenance und Predictive Maintenance, unter Einsatz von Digital Twins und neuer Methoden aus Machine Learning und Künstlicher Intelligenz entwickelt.

Bedarfsabhängige Wartung von z.B. Verdichtern, Lüftern und Luftfiltern sowie eine frühzeitige Erkennung von Systemanomalien im Betrieb senkt Instandhaltungskosten und gewährleistet gleichzeitig höchste Zuverlässigkeit und durchgehend hocheffizienten Anlagenbetrieb.

SMACS spannt den Bogen weiter: Ein digitaler Assistent zur Wartungsplanung aggregiert und bewertet anwendungsorientiert Informationen u.a. aus Condition-based Maintenance und Predictive Maintenance. Weiters wird ein digitaler Assistent entwickelt, um über ein Expertensystem mit Digital Twins das ausführende Wartungspersonal zu unterstützen. In SMACS wird somit ein durchgehend digital vernetztes Instandhaltungskonzept unter Mitwirkung wichtiger Player aus der Bahnbranche und der Forschung erarbeitet.

Smart Maintenance verspricht eine deutliche Verbesserung der Umweltfreundlichkeit/Nachhaltigkeit, Senkung der Instandhaltungskosten (bis zu 30 % gegenüber konventioneller präventiver Wartung), sowie eine Attraktivitätssteigerung für Passagiere insb. durch höhere Pünktlichkeit und geringere Ticketpreise.

Abstract

Environmentally friendly rail passenger mobility is a key to achieving sustainability goals, including those of the Paris Climate Agreement. In order to expand the attractiveness of public (local) passenger transport for passengers, availability, reliability, costs and comfort are key aspects - not least of the heating, ventilation, air conditioning (HVAC) system. Maintenance is required to ensure failure-free, energy-efficient, hygienic and safe operation of the HVAC system. Today, components are replaced preventively, regardless of actual deterioration, and usually before the end of their product life. This results in significant costs (material, maintenance time) and causes environmental impacts (waste, resource requirements for new components, energy demand).

The R&D project SMACS aims to advance innovations for smart maintenance of HVAC systems in rail vehicles. The fields of focus are demand-oriented and condition-based maintenance strategies, and efficient, digitally linked maintenance processes and tools.

SMACS is developing condition-based maintenance and predictive maintenance as new maintenance strategies, using digital twins and new methods from machine learning and artificial intelligence. Demand-based maintenance of e.g. compressors, fans and air filters as well as early detection of system anomalies during operation, reduces maintenance costs while ensuring highest reliability and continuous highly efficient system operation.

Furthermore a digital assistant for maintenance scheduling aggregates and evaluates application-oriented information from condition-based maintenance and predictive maintenance. In addition, a digital assistant is developed to support the executing maintenance personnel via an expert system by digital twinning. Thus, in SMACS, an end-to-end digitally linked maintenance concept is being developed with the participation of important players from the rail industry and the fields of research.

Projektkoordinator

Virtual Vehicle Research GmbH

Projektpartner

- Siemens Mobility Austria GmbH
- LIEBHERR-TRANSPORTATION SYSTEMS GMBH & Co KG
- Technische Universität Graz