

All-In-Crystal

Entwicklung eines miniaturisierten hochtemperaturtauglichen passiv funkabfragbaren Surface Acoustic Wave Sensorelements

Programm / Ausschreibung	Bridge, Bridge_NATS, Bridge_NATS 2019	Status	laufend
Projektstart	01.02.2022	Projektende	30.04.2025
Zeitraum	2022 - 2025	Projektlaufzeit	39 Monate
Keywords	Surface Acoustic Wave Sensorik, Chipscale Packaging, Harsh Environment Sensor		

Projektbeschreibung

Das Projekt All-In-Crystal löst bestehende Limitationen der Bauteilgröße von SAW Sensoren durch einen hochtemperaturtauglichen Waferlevel Packaging Ansatz. Der Einsatz des gleichen Wafermaterials für den funktionalen SAW Sensorwafer und einen Deckelwafer werden thermisch induzierte Spannungen minimiert und geringste Bauteilabmessungen realisiert. Durch den Ersatz von Polymeren durch Glasfrit basierte Verbindungsverfahren wird eine sehr hohe Einsatztemperatur gewährleistet.

Die beiden Projektpartner SAL und sensideon bündeln in dem Projektvorhaben ihre langjährige Entwicklungskompetenzen in der SAW Sensorik sowie der Aufbau- und Verbindungstechnik. Der miniaturisierte Ansatz führt zu kleinsten Sensorabmessungen von 1,3 x 2,1 x 0,5 mm und öffnet damit neue Anwendungen in der kabellosen Temperatur- und Dehnungsmessung.

Abstract

The All-In-Crystal project solves existing component size limitations of SAW sensors by a high temperature wafer level packaging approach. Using the same wafer material for the functional SAW sensor wafer and a lid wafer, thermally induced stresses are minimized and smallest device dimensions are realized. By replacing polymers with glass frit based interconnection processes, a very high operating temperature is guaranteed.

The two project partners SAL and sensideon are combining their many years of development expertise in SAW sensor technology as well as assembly and connection technology in this project. The miniaturized approach leads to smallest sensor dimensions of $1.3 \times 2.1 \times 0.5$ mm and thus opens up new applications in wireless temperature and strain measurement.

Projektkoordinator

Silicon Austria Labs GmbH

Projektpartner

• sensideon GmbH