

Eureka AddBot

EUREKA Südkorea 2020 Additive manufacturing of 3D piezoelectric sensor for in-situ monitoring semiconductor robot

Programm / Ausschreibung	BASIS, Basisprogramm, Budgetjahr 2020	Status	abgeschlossen
Projektstart	01.12.2020	Projektende	30.11.2021
Zeitraum	2020 - 2021	Projektlaufzeit	12 Monate
Keywords			

Projektbeschreibung

Piezoelektrische Keramiken wie z.B. Bleizirkonattitanat (PZT) sind als Sensormaterial weit verbreitet. PZT, ein keramisches Perowskitmaterial, das einen ausgeprägten piezoelektrischen Effekt zeigt (das Auftreten einer elektrischen Spannung an Körpern, wenn sie deformiert werden werden - bzw das umgekehrte Phänomen), was zu einer Reihe praktischer Anwendungen in der Sensorindustrie führt, wie z.B. Ultraschallwandler und piezoelektrische Resonatoren, Aktoren sowie hochwertige Keramikkondensatoren und FRAM (Ferroelectric Random Access Memory)-Chips. Multifunktionalität, mechanische Flexibilität, Langlebigkeit und Skalierbarkeit sind bei piezoelektrischen Materialien erwünschte Eigenschaften, um eine Vielzahl potenzieller Anwendungen in hochentwickelter Elektronik und biomedizinischen Geräten zu ermöglichen, insbesondere für Gerätschaften im Bereich Energy Harvesting. Bei piezoelektrischen Keramikmaterialien gibt es jedoch die erhebliche Einschränkung, dass eine geringe mechanische Duktilität und Flexibilität inhärent ist was scheinbar im Widerspruch zum piezoelektrischen Effekt an sich steht, da die Verbesserung des einen oft das andere reduziert bzw beeinträchtigt. Daher basieren die derzeit verfügbaren piezoelektrisch-polymeren Verbundwerkstoffe üblicherweise auf niedrigdimensionalen (0-D-Nanopartikel und 1-D-Nanodrähte) keramischen Füllstoffen, was die Entwicklung und Anwendung von piezoelektrischen Sensoren auf PZT-Basis stark eingeschränkt hat. Die bestehenden Technologien und Produkte im Zusammenhang mit PZT-basierten Sensoren können jedoch oft nicht mehr den Anforderungen der komplexen und multifunktionalen Entwicklung in vielen sich schnell weiterentwickelnden Technologiebereichen gerecht werden, so dass höhere Anforderungen an die Entwicklung neuer Technologien sowie an das innovative Design, die Herstellung und die Charakterisierungsmethoden gestellt werden. Die Innovation der traditionellen Herstellungsmethoden für PZT-Sensoren und die Erforschung neuer Technologien ist damit eine dringende und unvermeidliche Herausforderung. Da sie weithin als effektivstes Material für Piezo-Anwendungen angesehen wird, haben PZT-Materialien ein enormes Anwendungspotential nicht nur im niedrigdimensionalen Bereich, sondern auch in skalierbaren Produkten. Trotz der Hindernisse bei der Herstellung von 3D-PZT-basierten Sensoren wurden in den letzten Jahren vielversprechende Fortschritte erzielt und es war auch bereits möglich mittels 3D-Druck erste Sensoren auf PZT-Basis zu herzustellen und dabei eine hohe piezoelektrische Ladungs- und Spannungskonstante aber gleichzeitig auch eine ausreichende Flexibilität, die in früheren piezoelektrischen Forschungen nicht erreichbar war, zu erreichen. Auf Basis dieser neuen akademischen Errungenschaften und des im Projektkonsortium abgebildeten KnowHows im Bereich 3D-Druck, Materialwissenschaften und Sensorik wurde das gegenständliche Projekt Addbot entwickelt. Ziel von Addbot ist die Entwicklung eines neuartigen, stabilen, schnellen und fehlerfreien Herstellungsverfahrens für PZT-basierte Sensoren von 1D bis 3D basierend auf der von Lithoz entwickelten LCM-Technologie. Die Arbeitslogik von Addbot berücksichtigt dabei fast die gesamte technologische Prozesskette ausgehend von (bereits kommerziell verfügbaren) Pulverrohstoffen), über die Formgebung bis hin zu Charakterisierung und Validierung in einer relevanten Einsatzumgebung:

- 1) Entwurf, Vorbereitung und Optimierung neuer 3D-verbundener PZT-Elemente;
- 2) 3D-Druck (LCM) des PZT-Elements;
- 3) Thermische Nachbehandlung des 3D gedruckten PZT-Sensors;
- 4) Charakterisierung des PZT-Sensors;
- 5) Demonstration und Anwendungsfälle von 3D-verbundenen PZT-Sensoren

Projektpartner

• Lithoz GmbH