

COBS

CO2le Bäume und Sensoren - klimaregulierende Ökosystemleistungen erforschen und analysieren

Programm / Ausschreibung	Talente, Talente regional, Talente regional 2019	Status	abgeschlossen
Projektstart	01.06.2020	Projektende	31.05.2023
Zeitraum	2020 - 2023	Projektlaufzeit	36 Monate
Keywords			

Projektbeschreibung

Aktuell ist ein geschärftes Bewusstsein für komplexe Technik- und Umweltthemen bei Schüler innen zu verzeichnen, was der Schulunterricht stärker als bisher aufgreifen sollte. Das beantragte Projektvorhaben forciert dabei übergeordnete Bildungsanliegen, wie Bildung für Nachhaltige Entwicklung und Projektunterricht (BMBWF, 2019). Der Schwerpunkt des beantragten Projektvorhabens liegt auf der Programmierung von Umweltsensoren und deren elektronischer Verschaltung sowie der adäquaten Datenanalyse und -darstellung. Der Baum als außerschulischer Lernort verbindet diesen technischen Schwerpunkt mit dem starken Interessensbereich Natur & Mensch, wodurch eine große Anzahl an Schüler innen erreicht wird. Für die Förderung von Mädchen in MINT-Fächern sind solche themen- und anwendungsorientierten Zugänge besonders geeignet. Durch die Herstellung eines Lebensweltbezuges zum Lerninhalt gelingt es, die bei Kindern und Jugendlichen verschieden vertretenen Interessenstypen anzusprechen (Strahl, 2018). Die kooperativen Projektaktivitäten fördern durchgehend eine aktive Teilnahme der Schüler innen und das Thema Baum verknüpft dabei schulisch relevantes Fachwissen naturwissenschaftlicher Allgemeinbildung und aktuelle, gesellschaftsrelevante Themen. Zur Erfüllung der übergeordneten Bildungsanliegen wählt das Projekt interdisziplinäre Zugänge, die schulische Fächergrenzen überschreiten. Neben der innovativen Verknüpfung der Einzelthemen zu einem Gesamtbild erfahren die verschiedenen Unterrichtsfächer im MINT-Bereich eine für die Schüler innen neuartige Betrachtung, die über das in Schulen Mögliche hinausgeht. Im Rahmen von Workshops und Experimentiertagen wird den Schüler innen Raum für forschendes Lernen ermöglicht, in dem sie einen eigenen Schaltkreis mit Sensoren zusammenbauen und erlernen, wie diese anhand einfacher Programmierungen anzusteuern sind. Sie erforschen mithilfe von Sensoren außerdem eigenständig Bäume und deren klimaregulierenden Ökosystemleistungen. Zudem visualisieren und interpretieren die Schüler innen die resultierenden Messdaten sowie die eigenen Forschungsergebnisse, um sie anschließend über eine Web-App zu veröffentlichen. Es werden globale Themen wie Klima, Umwelt und Digitalisierung angesprochen und durch ausgewählte, international tätige Unternehmenspartner innen wird verdeutlicht, wie unterschiedliche gesellschaftliche Akteur innen an der Bewältigung von Zukunftsfragen zusammenarbeiten. Hierfür sind die Karrieretage und Betriebsexkursionen zentrale Projektaktivitäten, die den Schüler innen Einblicke in innovative Technologieunternehmen geben und authentische Begegnungen mit Mitarbeiter innen und Role Models ermöglichen.

Im Hauptantrag sind in der Zusammenfassung zwei weitere Absätze über die Ziele und Meilensteine vorhanden.

Projektkoordinator

• Universität Salzburg

Projektpartner

- GeoSphere Austria Bundesanstalt für Geologie, Geophysik, Klimatologie und Meteorologie
- Sony DADC Europe GmbH
- SIGMATEK GmbH & Co KG
- Pädagogische Hochschule Salzburg Institut für Didaktik, Unterrichts- und Schulentwicklung