

BEDA

Beurteilung der Asphaltmastixqualität in Hinblick auf die Dauerhaftigkeit von Asphaltdecken

Programm / Ausschreibung	Mobilität der Zukunft, Mobilität der Zukunft, MdZ - VIF 2018	Status	abgeschlossen
Projektstart	01.06.2019	Projektende	31.12.2020
Zeitraum	2019 - 2020	Projektlaufzeit	19 Monate
Keywords	Bitumen, Mastix, DSR, Ermüdung, Dauerhaftigkeit, Straßenschäden		

Projektbeschreibung

Die Hauptursachen für Schäden an Asphaltdeckschichten sind thermische Riss-bildung, Spurrinnen und ermüdungsbedingte Netzrisse, wobei Rissbildung durch die Asphaltalterung begünstigt wird [1]. Jedoch treten auf österreichischen Stra-ßen in den vergangenen Jahren vermehrt vorzeitig Schäden wie Korn- und Schol-lenausbrüche bei bituminösen Deckschichten auf, welche systematisch weder einer klimatischen noch einer Verkehrsbelastung zugeordnet werden können. Aktuell ist davon auszugehen, dass mangelnde Dauerhaftigkeit der Asphaltmastix (Bitumen + Feinanteile) beziehungsweise Haftung am Gestein Auslöser für diese Schäden sind.

Da jedoch weder in Normen noch in Regelwerken Grenz- oder Anforderungswer-te für den Nachweis der Dauerhaftigkeit beziehungsweise Ermüdungsbeständig-keit der Asphaltmastix vorhanden sind, ist es von besonderem Interesse, diese zu erforschen und in existierende Asphaltregelwerke zu implementieren, um die Le-bensdauer von Straßeninfrastruktur sicherzustellen und damit zur Ressourcen-schonung, sowie zum effizienten Einsatz von öffentlichen Geldern beizutragen. Asphaltmastix setzt sich aus Bitumen und Feinanteilen zusammen. Bei den Fein-anteilen handelt es sich um mineralische Gesteine mit einem Größtkorn kleiner als 125µm. In den aktuellen Regelwerken gibt es zwar grundlegende Anforderun-gen an Bitumen und Feinanteile, jedoch keine Prüfkriterien, mit denen eine ge-brauchsverhaltensorientierte (GVO) Ansprache der Asphaltmastix oder Feinantei-le möglich ist [2]. Derzeit können gemäß der Normenserie EN 13108-xx die GVO Prüfmethoden für Asphalt angewendet werden. Mit diesen Prüfungen können die wesentlichen Gebrauchseigenschaften wie das Kälteverhalten, die Steifigkeit, der Widerstand gegen bleibende Verformung sowie der Widerstand gegen Ermüdung abgeschätzt werden. Diese Prüfungen erfordern jedoch einen hohen Prüfaufwand und im Falle der Ermüdungsversuche am Vier-Punkt-Biegebalken auch sehr viel Material im Gegensatz zu den konventionellen Prüfmethoden [3]. Aus diesen Gründen ist ein wesentliches Ziel, in Zukunft die Ermüdung auf Mastixebene mittels Dynamischem Scher-Rheometer (DSR) zu beurteilen, da dies als Bindemittelkomponente die relevante Komponente im Asphalt ist. Zu die-sem Thema existieren mehrere internationale Studien, diese behandeln meist jedoch nur das Thema der Korrelation der Prüfergebnisse zwischen 4-Punkt-Biegebalken und DSR. Im Zuge dieses Projektes wird ausgehend von den bishe-rigen Erkenntnissen jedoch auch der Ursprung der unterschiedlichen Ermüdungs-verhalten eruiert. Vor allem in Hinblick auf die Kornform und kornformverwandte Faktoren, aber auch auf Wasserbeständigkeit und Alterungsverhalten werden hierfür nähere Untersuchungen durchgeführt.

Daraus werden Anforderungs- und Grenzwerte für den Nachweis der Dauerhaf-tigkeit bzw. Ermüdungsbeständigkeit der Asphaltmastix abgeleitet, welche in na-her Zukunft in existierende Asphaltregelwerke implementiert werden können.

Abstract

The primary causes for deterioration of asphalt pavement surface layers are thermal cracking, rutting and fatigue cracking. Bitumen ageing increases the risk for cracking [1]. In recent years, premature deterioration of bituminous bound sur-face layers, e.g. raveling, occurs on surface layers on the Austrian road network. This deterioration cannot be correlated to climactic or traffic loading. The current thesis is that it is linked either to inferior durability of the asphalt mastic (bitumen + fines) or poor aggregate adhesion.

At this time, there are nor specifications for durability or fatigue resistance of as-phalt mastic in product standards or regulations. To prevent premature failure in the future, it is of interest to study, analyze and understand impacts of filler quality on the durability of asphalt mastic by laboratory testing. This will ensure long-lasting road infrastructure, efficient and sustainable use of natural resources and public money.

Asphalt mastic consist of bitumen and fines. Fines are mineral aggregates with a maximum aggregate size smaller than 125 µm. Current regulations contain speci-fications for bitumen and fines, but no performance based testing of the mastic [2]. Currently, the European testing standards EN 12697-xx contain only perfor-mance based test methods for asphalt mixtures. These test methods address low temperature performance, stiffness and fatigue resistance as well as resistance to permanent deformation at high temperatures. However, the methods demand high amounts of material and time for specimen preparation and testing [3].

Therefore, it is the main goal of this proposed research project to assess fatigue resistance on the mastic level by Dynamic Shear Rheometer (DSR) in the future, since mastic is the relevant binding component in asphalt mixtures. There are several international studies that deal with this topic. However, these studies look mostly into correlation between fatigue on mastic and asphalt mix level. Within this project, the reasons for differences in the fatigue behavior of mastic with dif-ferent bitumen/filler combination will be investigated. Impacts of grain shape, moisture susceptibility and ageing effects will be analyzed in detail.

The results will be the basis for specifications regarding durability/fatigue re-sistance of asphalt mastics. These specifications can then be implemented into existing product standards and regulations.

Projektpartner

• Technische Universität Wien