

HiPhoP

High dimensional quantum Photonic Platform

Programm / Ausschreibung	Quant ERA, Quant ERA.NET, Quant ERA 2017	Status	abgeschlossen
Projektstart	01.08.2018	Projektende	31.07.2021
Zeitraum	2018 - 2021	Projektlaufzeit	36 Monate
Keywords	quantum photonic, quantum computing		

Projektbeschreibung

Die Photonik gehört zu den wenigen Architekturen, die eine hohe Komplexität im Bereich der Quantenkommunikation, der Quantencomputer und Quantenmessungen ermöglichen. Im Rahmen dieses Projektes werden Experten für Einzelphotonenquellen in Festkörpern, integrierter Photonik, Quantenoptik und Komplexitätstheorie ihre Fachwissen zusammenlegen, um eine neuartige Plattform zu entwickeln, die es erlaubt Quantenprotokolle mit mehreren Photonen, sowie einer Vielzahl an Moden und in einem hochdimensionierten Hilbert Raum zu realisieren. Dazu werden nahezu optimale Einzelphotonenquellen basierend auf Halbleiter Quantenpunkten entwickelt und an konfigurierbare dreidimensionale optische Wellenleiter gekoppelt, sodass Vielphotonenzustände gemäß quantenphysikalischer Regeln durch Netzwerke mit vielen Moden propagieren können.

Abstract

Today, photonics is among the very few platforms that can reach very high levels of complexity in quantum communication, computation and sensing. In this project, experts in solid-state single photon sources, integrated photonics, quantum optics and complexity theory join their expertise to develop a whole new platform to perform high fidelity quantum protocols, involving a large number of particles and large number of modes in high dimensional Hilbert spaces. We will develop near-optimal single-photon sources based on semiconductor quantum dots, and couple them to highly reconfigurable 3D photonic glass chips to implement multi-photon multi-mode quantum walks.

Projektpartner

Universität Wien