

Hybridlokomotive

Elektrolok mit Wasser-Elektrolyse-/Brennstoffzellen-Technologie für Verschub in Eisenbahnnetzen mit und ohne Fahrleitung

Programm / Ausschreibung	Mobilität der Zukunft, Mobilität der Zukunft, MdZ - PCP eHybridlok (2014)	Status	abgeschlossen
Projektstart	01.01.2015	Projektende	30.06.2015
Zeitraum	2015 - 2015	Projektlaufzeit	6 Monate
Keywords			

Projektbeschreibung

Ziel der Ingenieur-wissenschaftlichen Arbeitsgemeinschaft ist die Entwicklung einer Elektrolokomotive mit Wasser-Elektrolyse/Brennstoffzellen Energietransform- und Wasser-stoffspeichersystem für ausgedehnte Verschubeinsätze mit und ohne Fahrleitung. Für die erstmals mobile Anwendung der umweltschonenden, ressourcenabhängigkeitsvermeid-enden Technologie ist auch die Leistungselektronik der bestehenden Basis-lokomotive entsprechend zu adaptieren. Ein spezielles, von HET entwickeltes, Energiemanagement-system soll maximalen Wirkungsgrad der Brennstoffzelle bei jedem Lastkollektiv gewährleisten. Den Entwicklungsrisiken in punkto Kombination von PEM und Hochdruckelektrolyse steht mittelfristig großes wirtschaftliches Potenzial, insbesondere hinsichtlich den laufenden Betriebs- und Instandhaltungskosten gegenüber.

Abstract

The aim of the engineering-/scientific cooperation is to develop an electric locomotive driven by water-electrolysis/fuel-cell energy-transform and hydrogen-storage-system for shunting with and without overhead wire-use. For the first time mobile use of the environment-friendly and not-resource-dependency technology, power electronics has been modified too. By the mean of a new energy-management system, developed by HET, maximum fuel-cell efficiency will result.

Development risks are based upon the proposed combination of PEM and high-pressure electrolysis and the mobile application itself. Apart from this high economic benefit, because of low fuel costs and maintenance costs, will obtain in the middle run.

Projektkoordinator

• HET Hochleistungs-Eisenbahn- und Transporttechnik Entwicklungs-GmbH

Projektpartner

• Montanuniversität Leoben